RESEARCH PAPER
Passive exposure to e-cigarette emissions: Immediate respiratory effects
 
More details
Hide details
1
George D. Behrakis Research Lab-Hellenic Cancer Society, Athens, Greece
2
Institute of Public Health- The American College of Greece, Athens, Greece
3
Tobacco Control Unit, Institut català d’Oncologia(ICO) and Institut d’Investigació Bioomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
4
Department of Clinical Sciences, School of Medicine and Health Sciences, Campus de Bellvitge, Universitat de Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
Publish date: 2018-05-07
Submission date: 2018-03-26
Final revision date: 2018-04-16
Acceptance date: 2018-04-16
 
Tob. Prev. Cessation 2018;4(May):18
KEYWORDS:
TOPICS:
ABSTRACT:
Introduction:
The present work examined the effect of passive exposure to electronic-cigarette (e-cigarette) emissions on respiratory mechanics and exhaled inflammatory biomarkers.

Methods:
A cross-over experimental study was conducted with 40 healthy nonsmokers, 18–35 years old with normal physical examination and spirometry, with body mass index <30 kg/m2, who were exposed to e-cigarette emissions produced by a smoker, according to a standardized protocol based on two resistance settings, 0.5 ohm and 1.5 ohm, for e-cigarette use. All participants underwent a 30-minute control (no emissions) and two experimental sessions (0.5 and 1.5 ohm exposure) in a 35 m3 room. The following Impulse Oscillometry (IOS) parameters were measured at pre and post sessions: impedance, resistance, reactance, resonant frequency (fres), frequency dependence of resistance (fdr=R5–R20), reactance area (AX), and fractional exhaled nitric oxide (FeNO). Differences between pre and post measurements were compared using t-tests and Wilcoxon signed rank tests, while analysis of variance (ANOVA) was used for comparisons between experimental sessions (registered under ClinicalTrials.gov ID: NCT03102684).

Results:
IOS and FeNO parameters showed no significant changes during the control session. For IOS during the 1.5 ohm exposure session, fres increased significantly from 11.38 Hz at baseline to 12.16 Hz post exposure (p=0.047). FeNO decreased significantly from 24.16 ppb at baseline to 22.35 ppb post exposure in the 0.5 ohm session (p=0.006).

Conclusions:
A 30-minute passive exposure to e-cigarette emissions revealed immediate alterations in respiratory mechanics and exhaled biomarkers, expressed as increased fres and reduced FeNO.

CORRESPONDING AUTHOR:
Anna Tzortzi   
George D. Behrakis Research Lab-Hellenic Cancer Society, 17b Ipitou, 105 57 Athens, Greece
 
REFERENCES (41):
1. U.S. Dept. of Health and Human Services, Centers for Disease Control and Prevention, Coordinating Center for Health Promotion, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health. – [Atlanta, Ga.]. The health consequences of involuntary exposure to tobacco smoke: a report of the Surgeon General. 2006.
2. Kaisar MA, Prasad S, Liles T, Cucullo L. A decade of e-cigarettes: Limited research & unresolved safety concerns. Toxicology. 2016; 365:67–75. doi:10.1016/j.tox.2016.07.020
3. Vardavas CI, Anagnostopoulos N, Kougias M, Evangelopoulou V, Connolly GN, Behrakis PK. Short-term Pulmonary Effects of Using an Electronic Cigarette. Chest. 2012;141(6):1400–6. doi:http://linkinghub.elsevier.com....
4. Lappas AS, Tzortzi AS, Konstantinidi EM, Teloniatis SI, Tzavara CK, Gennimata SA, Koulouris, NG, Behrakis, PK. Short-term respiratory effects of e-cigarettes in healthy individuals and smokers with asthma. Respirology. 2018;23(3):291–297. doi:10.1111/resp.13180
5. Orellana-Barrios MA, Payne D, Mulkey Z, Nugent K. Electronic Cigarettes—A Narrative Review for Clinicians. Am J Med. 2015;128:674–81. doi: 10.1016/j.amjmed.2015.01.033
6. Fernándes E, Fu M, Martinez-Sanchez J. Exposure to aerosol from smoking-proxy electronic inhaling systems: a systematic review. http://www.who.int/tobacco/ind.... Published in Barcelona 30 September, 2016. Accessed 1 December, 2017.
7. Pisinger C, Døssing M. A systematic review of health effects of electronic cigarettes. Prev Med. 2014;69:248–60. doi: 10.1016/j.ypmed.2014.10.009.
8. American Industrial Hygiene Association®. White Paper: Electronic Cigarettes in the Indoor Environment Executive Summary Electronic-cigarettes. Authors: Thursa La, Marcham, C. https://tobacco.ucsf.edu/sites... Cig Document_Final.pdf. Published 19 October, 2014. Accessed 15 March, 2017.
9. Schober W, Szendrei K, Matzen W, Osiander-Fuchs H, Heitmann D, Schettgen T, Jörres RA, Hermann F. Use of electronic cigarettes (e-cigarettes) impairs indoor air quality and increases FeNO levels of e-cigarette consumers. Int J Hyg Environ Health. 2014;217(6):628–37. doi: 10.1016/j.ijheh.2013.11.003
10. Schripp T, Markewitz D, Uhde E, Salthammer T. Does e-cigarette consumption cause passive vaping? Indoor Air. 2013;23(1):25–31. doi: 10.1111/j.1600-0668.2012.00792.x
11. McCauley L, Markin C, Hosmer D. An Unexpected Consequence of Electronic Cigarette Use. Chest. 2012;141(4):1110–3. doi: 10.1378/chest.11-1334
12. Czogala J, Goniewicz ML, Fidelus B, Zielinska-Danch W, Travers MJ, Sobczak A. Secondhand exposure to vapors from electronic cigarettes. Nicotine Tob Res. 2014;16(6):655–62. doi: 10.1093/ntr/ntt203
13. Chang H. Research gaps related to the environmental impacts of electronic cigarettes. Tob Control. 2014;23 Suppl 2(suppl 2):ii54-8. doi: 10.1136/tobaccocontrol-2013-051480
14. Hess I, Lachireddy K, Capon A. A systematic review of the health risks from passive exposure to electronic cigarette vapour. Public Heal Res Pract. 2016;26(2). doi:10.17061/phrp2621617
15. Flouris AD, Chorti MS, Poulianiti KP, Jamurtas AZ, Kostikas K, Tzatzarakis MN, Hayes W, Tsatsakis AM, Koutedakis Y. Acute impact of active and passive electronic cigarette smoking on serum cotinine and lung function. Inhal Toxicol. 2013;25(2):91–101. doi:10.3109/08958378.2012.758197
16. Flouris AD, Poulianiti KP, Chorti MS, Jamurtas AZ, Kouretas D, Owolabi EO, Tzatzarakis MN, Tsatsakis AM, Koutedakis Y. Acute effects of electronic and tobacco cigarette smoking on complete blood count. FOOD Chem Toxicol. 2012;50:3600–3. doi:10.1016/j.fct.2012.07.025
17. Ballbè M, Martínez-Sánchez JM, Sureda X, Fu M, Pérez-Ortuño R, Pascual JA, Saltó E, Fernández, E. Cigarettes vs. e-cigarettes: Passive exposure at home measured by means of airborne marker and biomarkers. Environ Res. 2014;135:76–80. doi:10.1016/j.envres.2014.09.005
18. Cheng T. Chemical evaluation of electronic cigarettes. Tob Control. 2014;23(suppl 2):ii11-7. doi: 10.1136/tobaccocontrol-2013-051482
19. Sosnowski TR, Eng D, Kramek-Romanowska K, Eng M. Predicted Deposition of E-Cigarette Aerosol in the Human Lungs. J Aerosol Med Pulm Drug Deliv. 2016;29(3):299–309. doi: 10.1089/jamp.2015.1268
20. Grana R, Benowitz N, Glantz SA. E-cigarettes: a scientific review. Circulation. 2014;129(19):1972–86. doi: 10.1161/circulationaha.114.007667
21. Lerner CA, Sundar IK, Yao H, Gerloff J, Ossip DJ, McIntosh S, Robinson R, Rahman I. Vapors Produced by Electronic Cigarettes and E-Juices with Flavorings Induce Toxicity, Oxidative Stress, and Inflammatory Response in Lung Epithelial Cells and in Mouse Lung. PLoS One. 2015;10(2):e0116732. doi:10.1371/journal.pone.0116732
22. Tackling secondhand tobacco smoke and e-cigarette emissions: exposure assessment, novel interventions, impact on lung diseases and economic burden in diverse European populations (TackSHS). http://tackshs.eu/.
23. Spindle TR, Breland AB, Karaoghlanian N V., Shihadeh AL, Eissenberg T. Preliminary Results of an Examination of Electronic Cigarette User Puff Topography: The Effect of a Mouthpiece-Based Topography Measurement Device on Plasma Nicotine and Subjective Effects. Nicotine Tob Res. 2015;17(2):142–9. doi:10.1093/ntr/ntu186
24. Farsalinos KE, Spyrou A, Tsimopoulou K, Stefopoulos C, Romagna G, Voudris V. Nicotine absorption from electronic cigarette use: comparison between first and new-generation devices. Sci Rep. 2014;4:149–57. doi: 10.1038/srep04133
25. Farsalinos K, Romagna G, Tsiapras D, Kyrzopoulos S, Voudris V. Evaluation of Electronic Cigarette Use (Vaping) Topography and Estimation of Liquid Consumption: Implications for Research Protocol Standards Definition and for Public Health Authorities’ Regulation. Int J Environ Res Public Health. 2013;10(6):2500–14. doi:10.3390/ijerph10062500
26. Tzatzarakis MN. Results of chemical analysis in “Liqua traditional tobacco” e-cigarette liquid. Laboratory of Toxicology and Forensic Science, University of Crete Medical School Heraklion, Crete, Greece; 2015.
27. ATS/ERS. ATS/ERS Recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am J Respir Crit Care Med. 2005;171:912–30. doi:10.1164/rccm.200406-710ST
28. Deveci SE, Deveci F, Açik Y, Ozan AT. The measurement of exhaled carbon monoxide in healthy smokers and non-smokers. Respir Med. 2004;98(6):551–6. doi:10.1016/j.rmed.2003.11.018
29. Oostveen E, MacLeod D, Lorino H, Farre R, Hantos Z, Desager K, Marchal F. The forced oscillation technique in clinical practice: methodology, recommendations and future developments. Eur Respir J. 2003;22:1026–41. doi:10.1183/09031936.03.00089403
30. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Crapo R, Enright P, Van Der Grinten CPM, Gustafsson P, Jensen R, Johnson DC, Macintyre N, Mckay R, Navajas D, Pedersen OF, Pellegrino R, Viegi G, Wanger, J. Standardisation of spirometry. Eur Respir J. 2005;26:319–38. doi:10.1183/09031936.05.00034805
31. Brashier B, Salvi S. Measuring lung function using sound waves: Role of the forced oscillation technique and impulse oscillometry system. Breathe. 2015;11(1):57–65. doi:10.1183/20734735.20514
32. Desiraju K, Agrawal A. Impulse oscillometry: The state-of-art for lung function testing. Lung India. 2016;33(4):410–6. doi:10.4103/0970-2113.184875
33. Berger KI, Pradhan DR, Goldring RM, Oppenheimer BW, Rom WN, Segal LN. Distal airway dysfunction identifies pulmonary inflammation in asymptomatic smokers. ERJ Open Res. 2016;2(4):00066–2016. doi:10.1183/23120541.00066-2016
34. Bickel S, Popler J, Lesnick B, Eid N. Impulse oscillometry: Interpretation and practical applications. Chest. 2014;146(3):841–7. doi:10.1378/chest.13-1875
35. Kougias M, Vardavas CI, Anagnostopoulos N, Matsunaga Y, Tzwrtzi A, Lymberi M, Connolly GN, Behrakis PK. The acute effect of cigarette smoking on the respiratory function and FENO production among young smokers. Exp Lung Res. 2013;39(8):359–64. doi:10.3109/01902148.2013.830654
36. Lappas AS, Konstantinidi EM, Tzortzi AS, Tzavara CK, Behrakis PK. Immediate effects of cigar smoking on respiratory mechanics and exhaled biomarkers; differences between young smokers with mild asthma and otherwise healthy young smokers. Tob Induc Dis. 2016;14(1):29. doi: 10.1186/s12971-016-0095-6
37. Vardavas CI, Anagnostopoulos N, Kougias M, Evangelopoulou V, Connolly GN, Behrakis PK. Acute pulmonary effects of sidestream secondhand smoke at simulated car concentrations. Xenobiotica. 2013;43(6):509–13. doi:10.3109/00498254.2012.741272.
38. Kharitonov SA, Yates D, Barnes PJ. Increased nitric oxide in exhaled air of normal human subjects with upper respiratory tract infections. Eur Respir J. 1995;8(2):295–7. doi:10.1183/09031936.95.08020295
39. Norman V, Keith CH. Nitrogen Oxides in Tobacco Smoke. Nature. 1965;205:915–6.
40. National Center for Biotechnology Information. PubChem Substance and Compound database: Nicotine CID=89594. https://pubchem.ncbi.nlm.nih.g.... Accessed 12 August, 2017.
41. Kosmider L, Sobczak A, Fik M, Knysak J, Zaciera M, Kurek J, Goniewicz ML. Carbonyl compounds in electronic cigarette vapors: effects of nicotine solvent and battery output voltage. Nicotine Tob Res. 2014;16(10):1319–26. doi:10.1093/ntr/ntu078
eISSN:2459-3087