
Supplementary material to “Refuting tobacco-industry funded research:

empirical data shows decline in smoking prevalence following introduction of

plain packaging in Australia”

Reverse-engineering Kaul and Wolf’s figures

to reconstruct the data they used

in their working papers on plain packaging

P.A. Diethelm, OxyRomandie

Description of the method

This supplementary document describes how Diethelm and Farley reconstructed the data used by

Kaul and Wolf in their working papers.1 It is believed that the (original) method presented below has

made it possible to reconstruct the data with almost perfect accuracy. The method consists in a

number of steps, which will be documented in detail. The computer program used in the fourth step

is shown in Annex 1 and the reconstructed data is shown in Annex 2.

Step 1. Extracting the images from Kaul and Wolf’s paper

Kaul and Wolf’s two working papers are in PDF format. They can be downloaded from the website of

the University of Zürich. We consider here only the second working paper, on adults (the same

procedure could be applied to the first paper). The figures showing the time series plot of the

monthly sample sizes (Figure 1 in the paper) and of observed prevalence (Figure 2 in the same paper)

were apparently produced using the R statistical package. We used these two figures to extract the

data on sample size and prevalence. We first read the working paper into Adobe Acrobat Reader and

accessed the page containing Figures 1 and 2 (page 11). We took a snapshot of each figure using

Acrobat’s snapshot function and “printed” it to a PDF file, producing files prevalence.pdf and

sample-size.pdf.

1 Kaul A and Wolf M. The (Possible) Effect of Plain Packaging on the Smoking Prevalence of Minors in
Australia: A Trend Analysis. University of Zurich Department of Economics Working Paper Series. May
2014; Available from http://www.econ.uzh.ch/static/workingpapers.php?id=828

Kaul A and Wolf M. The (Possible) Effect of Plain Packaging on Smoking Prevalence in Australia: A
Trend Analysis. University of Zurich Department of Economics Working Paper, June 2014. Series.
Available from: http://www.econ.uzh.ch/static/workingpapers.php?id=844

http://www.econ.uzh.ch/static/workingpapers.php?id=828
http://www.econ.uzh.ch/static/workingpapers.php?id=844

Step 2. Pre-processing the images in Photoshop

We read each PDF file produced at Step 1 into Photoshop, specifying a very high resolution of 2400

pixels per inch (producing a very large image of about 26,000 x 20,000 pixels). The following picture

shows how the image for prevalence looked like in Photoshop:

With Photoshop, we modified the colour of the prevalence (and sample size) line, made of various

shades of blue (by “anti-aliasing”). We replaced all these shades of blue with a 100% pure red with no

anti-aliasing. The enlarged before-and-after details below illustrate this step.

Before:

After:

Before performing this step, we made sure pure red - colour rgb(255,0,0) - was not already used in

the picture. The purpose of this step was to obtain a good contrast between the red line and its

white background in order to facilitate the identification of the edge pixels of the line by the

image2data.py computer program described below.

Step 3. Identifying key points on the images with yellow pixels

Still processing each figure in Photoshop, we also made that there was no pure yellow -

rgb(255,255,0) – pixel in the image. We then painted a single pure yellow pixel at four particular

places, as shown in the illustration below:

Two yellow pixels were painted on the vertical axis, as shown below. The pixels were be put at the

middle point of the highest and lowest tick marks:

The other two yellow pixels were used to identify the starting point and the ending points of the

plotted line. The pixels at the start and end of the plot line were placed as shown in the following

picture, in a way to approximate as best as possible the actual starting and ending points of the

underlying line.

We saved the image thus obtained for each figure in JPEG format with the highest quality (12), under

file names prevalence.jpg and sample-size.jpg.

Step 4. Running Python program image2data.py

We ran Python program image2data.py which we wrote specifically to treat the above images

(see Annex 1). For each image file, 5 parameters were specified: two for the y-values corresponding

to the yellow pixels on the vertical axis (corresponding respectively to the lowest and highest tick

marks), two for the x-values associated with the pixels put at the start and end of the plot line

(normally 1 and 156, since the plot starts at month 1 and ends at month months 156) and one

specifying the number of points (156). The parameters were as follows for Figure 1 and Figure 2 of

Kaul and Wolf’s June paper.

Figure 1 (sample size): 3500, 5000, 1, 156, 156

Figure 2 (prevalence): 18, 24, 1, 156, 156

The Python program calculates the data values by fitting straight lines on the edge pixels of the plot.

For each line segment between two adjacent point, the program identifies the left edge pixels and

the right edge pixels and fits a straight line by least square regression (if the line segment is more

horizontal than vertical, the top and bottom edge pixels are used instead of the left and right edge

pixels). Two lines are thus obtained – shown as dashed lines in the illustration below - , a left line and

a right line (or a top line and a bottom line). The program then calculates the middle line between

these two lines and assumes that this was the line representing the segment joining the two points -

if the left line is ὥὼ ὦ and the right line is ὧὼὨ, the middle line will be given by ὥ ὧὼ

ὦ Ὠ. The data points which we are looking for are assumed to lie at the intersection of adjacent

segments, as shown in the picture (surrounded by the green circle).

Using the Python program, we created two data files, sample-size.txt and

prevalence.txt (in tab delimited text format), one containing the estimated values of sample

sizes, the other containing the estimated values of observed monthly prevalence. These values were

produced with high precision (10 significant digits).

Step 5. Assembling the data produced by program image2data.py

The two data files (sample-size.txt and prevalence.txt) produced by program

image2data.py were then assembled into a single Excel file, with three columns, time (with

values 1 to 156), prev and size. Steps 6-7 below were performed in Excel on the joined data.

Step 6. Assessing the accuracy of the resulting approximations

Sample size data: When working on Figure 1 (sample size), the y-coordinate of the data points

obtained by the above method approximates the number of observations, which are whole numbers.

We assumed that if our results were close to whole numbers, this indicated that the approximation

was good and that probably many of the actual numbers of monthly observations were

reconstructed exactly. See below the histogram of the difference between our approximations of

sample sizes and the nearest whole number:

One can see that indeed there was a concentration of this difference around zero: only 8 data points

fell outside the range [-0.1, 0.1].

Prevalence data: We worked on Figure 2 to reconstruct the values of estimated monthly prevalence.

We then assumed that the original observed prevalence data used by Kaul and Wolf were obtained

by dividing the number of smokers in the monthly samples by the corresponding number of

observations (sample size). We made the following reasoning: if we take the approximate prevalence

values produced by our program and multiply them by the approximated sample sizes, we get an

approximation of the number of smokers in the monthly sample. That is, we get a value which again

approximates a whole number. Looking at the difference between the approximated values of the

number of smokers we obtained and the nearest integer provided us with an indication of the

accuracy of our approximations. See below the histogram of the differences between our

approximations of the number of smokers and the nearest whole number:

0

20

40

60

80

100

120

140

-0
.4

5

-0
.4

-0
.3

5

-0
.3

-0
.2

5

-0
.2

-0
.1

5

-0
.1

-0
.0

5 0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

M
o

re

Fr
e

q
u

e
n

cy

Bin

0

20

40

60

80

100

120

140

-0
.4

5

-0
.4

0

-0
.3

5

-0
.3

0

-0
.2

5

-0
.2

0

-0
.1

5

-0
.1

0

-0
.0

5

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

0
.3

5

0
.4

0

0
.4

5

M
o

re

Fr
e

q
u

e
n

cy

Bin

Step 7. Fine tuning the sample size estimates

All data points, except two, fell in the interval [-0.1, 0.1]. This was excellent, but we did not stop

there. We looked closely at these two particular points. Table below shows the information we

considered and the correction of the sample sizes this suggested.

Month 90 110

(1) size -Estimated sample size
(produced by program
image2data.py)

4325.64147194 4312.26422951

(2) Sample size rounded 4326 4312

(3) prev - Estimated monthly
prevalence (%, produced by
program image2data.py)

21.47969507 21.07572527

(4) Estimated number of
smokers – prev*size/100

929.2116 908.7853

(5) Number of smokers
rounded
round(prev*size/100;0)

929 909

(6) Deviation from nearest
whole number – (4)-(5)

0.211609 -0.21473

(7) Corrected sample size 4325 4313

(8) Corrected estimate of
number of smokers –
(2)*(7)/100

928.9968 908.996

(9) Corrected number of
smokers rounded

929 909

(10) Deviation of (8) from
nearest whole number

-0.00319 -0.00397

(11) Revised estimated
prevalence in % – (9)*100/(7)

21.47976879 21.07581730

When changing the estimated sample size for month 90 from 4326 to 4325 (taking the floor of the

estimated size produced by program image2data.py instead of its ceiling) and applying to it the

prevalence figure produced by the program, we got a number which was very close to a whole

number. This suggested that 4325 was the correct sample size. We made a similar reasoning for the

sample size of month 110. These were the only two manual corrections we applied to the data

automatically produced by program image2data.py.

With the data set thus corrected, we calculated the number of smokers in each monthly sample (the

method is illustrated in the above table) and then we re-computed the estimated monthly prevalence

for each month as shown on row (11) of the table, to ensure that the estimated prevalence values

were strictly equal to the number of smokers divided by the sample size.

The final data can be found in Appendix 2.

Step 8. Validating the data estimates by reproducing results computed with the

real data

Using the final data, we were able to reproduce exactly Kaul and Wolf regression results presented in

Table 1 of their June working paper (i.e. up to rounding precision). We were able to also reproduce

exactly results in prof. Jann’s Methodological Report,2 as is illustrated by the following two extracts,

the first one being from prof. Jann’s report:

The second is the output produced by R when running the same logit analysis using our data:

We also noted that the number of observations reported in prof. Jann’s analysis (506,657)

corresponds exactly to the number we have estimated. We have done some sensitivity analysis

showing that if a single monthly sample size figure is changed by just one unit, the results are no

longer totally identical.

This is a good indication that we were able to reconstruct the data used by Kaul and Wolf in their

June working paper with near perfect accuracy.

2015.10.27/pad

2 Jann B. Methodological Report on Kaul and Wolf’s Working Papers on the Effect of Plain Packaging
on Smoking Prevalence in Australia and the Criticism Raised by OxyRomandie. University of Bern,
Institute of Sociology, Bern, 10 March 2015

Annex 1. Python code of program image2data.py

- * - coding: utf - 8 - * -

Obtaining data by reverse engineering from published figures

Author: Pascal Diethelm, 02.10.2015

PARM = [

 ['sample size', 'sample - size.png', 'sample - size.txt', 3500, 5000, 1, 156, 156],

 ['prevalence', 'prevalence.png', 'prevalence.txt', 18, 24, 1, 1 56, 156]

]

Imports --

import os

chdir = os.chdir

import scipy

from scipy import stats

import PIL

from PIL import Image

Constants ---

DIR = ' .' # Work directory (change to directory where images are stored)

MARGIN = 0.33 # Margin around exact x - values defining vertical band considered for

fitting line

Functions ---

def is_yellow(x,y) :

 pix = PX[x,y]

 return (pix[0] >= 200 and pix[1] >= 200 and pix[2] <= 50)

def is_red(x,y) :

 pix = PX[x,y]

 return (pix[0] >= 200 and pix[1] <= 50 and pix[2] <= 50)

def is_white(x,y) :

 pix = PX[x,y]

 return (pix[0] >= 200 and pix[1] >= 200 and p ix[2] >= 200)

def process_image(img_file, v0, v1, t0, t1, t_max) :

 global X0, Y0, X1, Y1, Z0, Z1, T0, T1, V0, V1, NX, NY, PX, A_T2X, A_X2T, A_Y2V

 print("Processing file "+img_file)

 X0 = - 1; Y0 = - 1; X1 = - 1; Y1 = - 1

 V0 = v0; V1 = v 1; T0 = t0; T1 = t1

 img = Image.open(img_file)

 NX = img.size[0]

 NY = img.size[1]

 PX = img.load()

 print("Width = "+str(NX)+" pixels, height = "+str(NY)+" pixels")

 for x in range(NX) :

 for y in range(NY) :

 if (is_ yellow(x,y)) :

 print("Yellow pixel at ("+str(x)+","+str(y)+")")

 if (Y1 == - 1) : Y1 = y

 elif (Y0 == - 1) : Y0 = y

 elif (X0 == - 1) : X0 = x; Z0 = y

 elif (X1 == - 1) : X1 = x; Z1 = y

 if (Y 1 > Y0) :

 y = Y1

 Y1 = Y0

 Y0 = y

 A_T2X = (X1 - X0)/(T1 - T0)

 A_X2T = (T1 - T0)/(X1 - X0)

 A_Y2V = (V1 - V0)/(Y1 - Y0)

 segments = []

 for t in range(1,t_max) :

 x_low = t2x(t+MARGIN);

 x_hi = t2x(t+1 - MARGIN);

 segment = calc_segment(t,x_low,x_hi)

 segments.append(segment)

 print([t,segment])

 value = []

 v_est = y2v(Z0)

 value.append([1,1,v_est,0,v_est,v_est])

 for t in range(1,t_max - 1) :

 x = t2x(t+1)

 [a,b] = segments[t - 1]

 [c,d] = segments[t]

 v_left = y2v(a*x+b)

 v_right= y2v(c*x+d)

 v_mid = (v_left+v_right)/2

 if abs(a - c) > 0.01 :

 v_est = y2v(a*(d - b)/(a - c) + b)

 t_est = x2t((d - b)/(a - c))

 else :

 v_est = v_mid

 t_est = t

 value.append([t+1,t_est,v_est,v_left,v_right,v_mid])

 v_est = y2v(Z1)

 value.append([t_max,t_max,v_est,v_est,0,v_est])

 return value

def t2x(t) : return int(round(X0+(t - T0)*A_T2X,0))

def y2v(y) : return V0+(y - Y0)*A_Y2V

def x2t(x) : return T0+(x - X0)*A_X2T

def calc_segment(t,x_lo,x_hi) :

 x_left = []

 y_left = []

 x_right = []

 y_right = []

 x_up = []

 y_up = []

 x_down = []

 y_down = []

 for x in range(x_lo+1, x_hi) :

 for y in range(1, NY - 1) :

 if (is_red(x,y)) :

 left = is_white(x - 1,y - 1) or is_white(x - 1,y) or is_white(x - 1,y+1)

 right = is_white(x+1,y - 1) or is_white(x+1,y) or is_white(x+1,y+1)

 up = is_white(x - 1,y - 1) or is_white(x,y - 1) or is_white (x+1,y - 1)

 down = is_white(x - 1,y+1) or is_white(x,y+1) or is_white(x+1,y+1)

 if left and not right :

 x_left.append(x)

 y_left.append(y)

 elif right and not left :

 x_right.append(x)

 y_right.append(y)

 if up and not down :

 x_up.append(x)

 y_up.append(y)

 elif down and not up :

 x_down.append(x)

 y_down.append(y)

 if min(len(x_left),len(x_right)) >= min(len(x_up), len(x_down)) :

 a1, b1 = linear_regress(x_left,y_left)

 a2, b2 = linear_regress(x_right,y_right)

 else :

 a1, b1 = linear_regress(x_up,y_up)

 a2, b2 = linear_regress(x_down,y_down)

 return [(a1+a2)/2, (b1+b2)/2]

def linear_regress(x, y) :

 n = len(x)

 x_bar = sum(x)/n

 y_bar = sum(y)/n

 sumxy = 0

 sumx2 = 0

 for i in range(n) :

 sumxy += (x[i] - x_bar)*(y[i] - y_bar)

 sumx2 += (x[i] - x_bar)*(x[i] - x_bar)

 a = sumxy/sumx2

 b = y_bar - a*x_bar

 ret urn [a,b]

def write_file(file, data) :

 output("t \ tt_est \ tv_est \ tv_left \ tv_right \ tv_mid")

 for [t,t_est,v_est,v_left,v_right,v_mid] in data :

 output(str(t)+" \ t"+fmtP(t_est)+" \ t"+fmtP(v_est)+" \ t"+fmtP(v_left)+" \ t"+fmtP(v_right) \

 +" \ t"+fmtP(v_mid))

 write_output(file)

def output(line) :

 lines_out.append(line+" \ n")

 print(line)

def write_output(file) :

 file_out = open(file, 'w');

 file_out.writelines(lines_out)

 file_out.close()

def fmtP(P) : return '{:12.8f }'.format(P)

Main procedure ---

chdir(DIR)

for [label, img_file, txt_file, v0, v1, t0, t1, t_max] in PARM :

 lines_out = []

 print('Processing '+label+' graph')

 data = process_image(DIR+"/"+img_file, v0, v1, t0, t1, t_max)

 write_file(DIR+"/"+txt_file, data)

EOF

Annex 2. Reconstructed data using Figure 1 and Figure 2 of Kaul and

Wolf’s June working paper

time prev smokers non_smokers size

1 24.94345054 1213 3650 4863

2 24.8132445 0 1229 3724 4953

3 23.41453594 1163 3804 4967

4 23.99176955 1166 3694 4860

5 24.68743378 1165 3554 4719

6 24.15117219 1195 3753 4948

7 23.54865086 1152 3740 4892

8 23.60905437 1116 3611 4727

9 24.71644612 1046 3186 4232

10 24.3559719 0 1040 3230 4270

11 24.091954 02 1048 3302 4350

12 23.27227311 1118 3686 4804

13 23.59735974 1144 3704 4848

14 23.04147465 1100 3674 4774

15 23.06425041 1120 3736 4856

16 24.13793103 1141 3586 4727

17 24.29501085 1120 3490 4610

18 23.68421053 1170 3770 4940

19 23.16152685 1074 3563 4637

20 23.22264794 1091 3607 4698

21 24.34441462 1179 3664 4843

22 21.91107311 1025 3653 4678

23 23.89006342 1130 3600 4730

24 22.84420663 1110 3749 4859

25 23.17406862 1101 3650 4751

26 22.60887685 1085 3714 4799

27 24.1701451 0 1216 3815 5031

28 24.24677188 1183 3696 4879

29 23.4828496 0 1157 3770 4927

30 23.18745918 1065 3528 4593

31 23.76152691 1108 3555 4663

32 24.68268359 1089 3323 4412

33 22.52964427 1026 3528 4554

34 22.38772788 1007 3491 4498

35 23.49702709 1067 3474 4541

36 24.76149176 1142 3470 4612

37 22.88211564 1021 3441 4462

38 23.53846154 1071 3479 4550

39 21.56626506 1074 3906 4980

40 22.8928885 0 1043 3513 4556

41 22.53401361 1060 3644 4704

42 23.04469274 1155 3857 5012

43 22.17675941 1084 3804 4888

44 22.3880597 0 1020 3536 4556

45 22.9422419 0 1140 3829 4969

46 23.25386867 1112 3670 4782

47 22.90901673 1123 3779 4902

48 23.7504998 0 1188 3814 5002

49 23.11567916 1147 3815 4962

50 22.54090083 1116 3835 4951

51 24.75100657 1168 3551 4719

52 22.85775037 1075 3628 4703

53 23.7374861 0 1067 3428 4495

54 23.74864572 1096 3519 4615

55 23.25949367 1029 3395 4424

56 22.94450736 1013 3402 4415

57 23.24112394 1067 3524 4591

58 21.6374269 0 962 3484 4446

59 23.00155867 1033 3458 4491

60 22.33662534 1063 3696 4759

61 21.14260982 977 3644 4621

62 21.62595114 1080 3914 4994

63 21.60443168 1053 3821 4874

64 22.72149216 1072 3646 4718

65 22.89257936 1089 3668 4757

66 23.25399922 1192 3934 5126

67 20.83598557 982 3731 4713

68 23.03606993 1041 3478 4519

69 22.954 72597 1156 3880 5036

70 22.8623043 0 1139 3843 4982

71 21.22186495 1056 3920 4976

72 21.7356368 0 1082 3896 4978

73 21.430002 00 1070 3923 4993

74 22.51124584 1151 3962 5113

75 21.75214528 1090 3921 5011

76 21.85483871 1084 3876 4960

77 21.200453 00 936 3479 4415

78 22.56572541 927 3181 4108

79 21.41468158 881 3233 4114

80 21.57550257 923 3355 4278

81 21.62162162 928 3364 4292

82 20.91943348 901 3406 4307

83 21.34986226 930 3426 4356

84 21.9043152 0 934 3330 4264

85 21.50201162 962 3512 4474

86 20.53189092 911 3526 4437

87 19.45721164 889 3680 4569

88 21.47847645 953 3484 4437

89 20.92968381 887 3351 4238

90 21.47976879 929 3396 4325

91 21.2293037 0 936 3473 4409

92 22.21706865 958 3354 4312

93 21.57978602 948 3445 4393

94 21.4864552 0 928 3391 4319

95 21.84716362 932 3334 4266

96 20.54541253 889 3438 4327

97 20.50973792 853 3306 4159

98 21.2944664 0 862 3186 4048

99 20.84444444 938 3562 4500

100 20.1369863 0 882 3498 4380

101 21.52777778 930 3390 4320

102 20.91356919 934 3532 4466

103 20.97740894 910 3428 4338

104 19.78307003 839 3402 4241

105 22.44521338 973 3362 4335

106 20.08784096 869 3457 4326

107 19.71046771 885 3605 4490

108 20.34652306 869 3402 4271

109 21.36894825 896 3297 4193

110 21.0758173 0 909 3404 4313

111 19.449 45848 862 3570 4432

112 19.59855661 869 3565 4434

113 19.98094784 839 3360 4199

114 18.71897896 792 3439 4231

115 18.92682927 776 3324 4100

116 18.78632876 808 3493 4301

117 20.42314335 946 3686 4632

118 19.40228812 831 3452 4283

119 20.98535905 903 3400 4303

120 20.80019282 863 3286 4149

121 18.98402099 796 3397 4193

122 20.00921022 869 3474 4343

123 18.92069041 866 3711 4577

124 19.59508315 813 3336 4149

125 19.28251121 817 3420 4237

126 19.76942784 926 3758 4684

127 19.64535698 842 3444 4286

128 19.1011236 0 765 3240 4005

129 19.18533605 942 3968 4910

130 18.8480502 0 841 3621 4462

131 18.67732558 771 3357 4128

132 19.16391639 871 3674 4545

133 19.77463544 895 3631 4526

134 17.88990826 858 3938 4796

135 18.92667845 857 3671 4528

136 17.55585955 770 3616 4386

137 19.51438849 868 3580 4448

138 20.30728123 912 3579 4491

139 19.95428571 873 3502 4375

140 19.89013504 869 3500 4369

141 20.06721075 836 3330 4166

142 19.65442765 819 3348 4167

143 18.64698647 758 3307 4065

144 17.1199 1712 661 3200 3861

145 18.50992524 718 3161 3879

146 18.54858549 754 3311 4065

147 18.91836735 927 3973 4900

148 17.70941055 685 3183 3868

149 19.0716448 0 756 3208 3964

150 18.90675241 882 3783 4665

151 18.1372549 0 740 3340 4080

152 17.97893681 717 3271 3988

153 18.37016575 798 3546 4344

154 18.54285714 649 2851 3500

155 18.14715119 809 3649 4458

156 18.27784891 571 2553 3124

Total 152,163 552,803 704,966

