
1

Supplementary material to

“Re-analysing tobacco-industry funded research on the effect of plain

packaging on minors in Australia: same data, different results”

Reverse-engineering Kaul and Wolf’s figures

to reconstruct the data on minors they used

in their first working paper on plain packaging

P.A. Diethelm, OxyRomandie

Description of the method

This supplementary document describes how Diethelm and Farley reconstructed the data used by

Kaul and Wolf in their working paper on minors.1 It is believed that the (original) method presented

below has made it possible to reconstruct the data with 100% accuracy. The method consists in a

number of steps, which will be documented in detail. The computer program used in the fourth step

is shown in Annex 1 and the reconstructed data is shown in Annex 2. The same procedure was used

to reconstruct the data on adults in a previously published paper.

Step 1. Extracting the images from Kaul and Wolf’s paper

Kaul and Wolf’s working paper on minors is in PDF format and can be downloaded from the website

of the University of Zürich. The figures showing the time series plot of the monthly sample sizes

(Figure 1 in the paper) and of observed prevalence (Figure 2 in the same paper) were apparently

produced using the R statistical package. We used these two figures to extract the data on sample

size and prevalence. We first read the working paper into Adobe Acrobat Reader and accessed the

page containing Figures 1 and 2 (on page 12). We took a snapshot of each figure using Acrobat’s

snapshot function and “printed” it to a PDF file, producing files prevalence.pdf and sample-

size.pdf.

Step 2. Pre-processing the images in Photoshop

1 Kaul A and Wolf M. The (Possible) Effect of Plain Packaging on the Smoking Prevalence of Minors in
Australia: A Trend Analysis. University of Zurich Department of Economics Working Paper Series. May
2014; Available from http://www.econ.uzh.ch/static/workingpapers.php?id=828

http://www.econ.uzh.ch/static/workingpapers.php?id=828

2

We read each PDF file produced at Step 1 into Photoshop, specifying a very high resolution of 2400

pixels per inch (producing a very large image of about 26,000 x 20,000 pixels). The following picture

shows how the image for prevalence looked like in Photoshop:

With Photoshop, we modified the colour of the prevalence (and sample size) line, made of various

shades of blue (by “anti-aliasing”). We replaced all these shades of blue with a 100% pure red with no

anti-aliasing. The enlarged before-and-after details below illustrate this step.

Before

After

Before performing this step, we made sure pure red - colour rgb(255,0,0) - was not already used in

the picture. The purpose of this step was to obtain a good contrast between the red line and its

3

white background in order to facilitate the identification of the edge pixels of the line by the

image2data.py computer program described below.

Step 3. Identifying key points on the images with yellow pixels

Still processing each figure in Photoshop, we also made that there was no pure yellow -

rgb(255,255,0) – pixel in the image. We then painted a single pure yellow pixel at four particular

places, as shown in the illustration below:

Two yellow pixels were painted on the vertical axis, as shown below. The pixels were be put at the

middle point of the highest and lowest tick marks:

4

The other two yellow pixels were used to identify the starting point and the ending points of the

plotted line. The pixels at the start and end of the plot line were placed as shown in the following

picture, in a way to approximate as best as possible the actual starting and ending points of the

underlying line.

We saved the image thus obtained for each figure in JPEG format with the highest quality (12), under

file names prevalence.jpg and sample-size.jpg.

Step 4. Running Python program image2data.py

We ran Python program image2data.py which we wrote specifically to treat the above images

(see Annex 1). For each image file, 5 parameters were specified: two for the y-values corresponding

to the yellow pixels on the vertical axis (corresponding respectively to the lowest and highest tick

marks), two for the x-values associated with the pixels put at the start and end of the plot line

(normally 1 and 156, since the plot starts at month 1 and ends at month months 156) and one

specifying the number of points (156). The parameters were as follows for Figure 1 and Figure 2.

Figure 1 (sample size): 200, 350, 1, 156, 156

Figure 2 (prevalence): 4, 14, 1, 156, 156

The Python program calculates the data values by fitting straight lines on the edge pixels of the plot.

For each line segment between two adjacent point, the program identifies the left edge pixels and

the right edge pixels and fits a straight line by least square regression (if the line segment is more

horizontal than vertical, the top and bottom edge pixels are used instead of the left and right edge

pixels). Two lines are thus obtained – shown as dashed lines in the illustration below - , a left line and

a right line (or a top line and a bottom line). The program then calculates the middle line between

these two lines and assumes that this was the line representing the segment joining the two points -

if the left line is 𝑎𝑥 + 𝑏 and the right line is 𝑐𝑥 + 𝑑, the middle line will be given by
1

2
(𝑎 + 𝑐)𝑥 +

1

2
(𝑏 + 𝑑). The data points which we are looking for are assumed to lie at the intersection of adjacent

segments, as shown in the picture (surrounded by the green circle).

5

Using the Python program, we created two data files, sample-size.txt and

prevalence.txt (in tab delimited text format), one containing the estimated values of sample

sizes, the other containing the estimated values of observed monthly prevalence. These values were

produced with high precision (10 significant digits).

Step 5. Assembling the data produced by program image2data.py

The two data files (sample-size.txt and prevalence.txt) produced by program

image2data.py were then assembled into a single Excel file, with three columns, time (with

values 1 to 156), prev and size. Steps 6-7 below were performed in Excel on the joined data.

Step 6. Assessing the accuracy of the resulting approximations

Sample size data: When working on Figure 1 (sample size), the y-coordinate of the data points

obtained by the above method approximates the number of observations, which are whole numbers.

We assumed that if our results were close to whole numbers, this indicated that the approximation

was good and that probably many of the actual numbers of monthly observations were

reconstructed exactly. See below the histogram of the difference between our approximations of

sample sizes and the nearest whole number:

6

One can see that indeed there was a concentration of this difference around zero: all points are

inside the range [-0.05, 0.05].

We rounded the values produced by the Python program to the nearest whole numbers, thus

obtaining the reconstructed sample sizes.

Prevalence data: We worked on Figure 2 to reconstruct the values of estimated monthly prevalence.

We then assumed that the original observed prevalence data used by Kaul and Wolf were obtained

by dividing the number of smokers in the monthly samples by the corresponding number of

observations (sample size). We made the following reasoning: if we take the approximate prevalence

values produced by our program and multiply them by the approximated sample sizes, we get an

approximation of the number of smokers in the monthly sample. That is, we get a value which, if

accurate, should be very close to a whole number. Therefore, looking at the difference between the

approximated values of the number of smokers we obtained and the nearest integer provided us

with an indication of the accuracy of our approximations. See below the histogram of the differences

between our approximations of the number of smokers and the nearest whole number:

0

20

40

60

80

100

120

140

-0
.4

5

-0
.4

-0
.3

5

-0
.3

-0
.2

5

-0
.2

-0
.1

5

-0
.1

-0
.0

5 0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

M
o

re

Fr
e

q
u

e
n

cy

Bin

0

20

40

60

80

100

120

140

-0
.4

5

-0
.4

0

-0
.3

5

-0
.3

0

-0
.2

5

-0
.2

0

-0
.1

5

-0
.1

0

-0
.0

5

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

0
.3

5

0
.4

0

0
.4

5

M
o

re

Fr
e

q
u

e
n

cy

Bin

7

One can see again that there was a concentration of this difference around zero: all points are inside

the range [-0.05, 0.05]. This is indicative of a high level of accuracy of the prevalence estimates

produced by the Python program.

From these prevalence estimates we obtained more accurate values by taking instead the numbers

of smokers (whole numbers) which they imply divided by the sample sizes.

With this last operation, we assumed that we able to reconstruct the data with 100% accuracy. A few

more checks were performed to validate this assumption.

Step 7. Further checks

We first observed that the sum of the monthly sample sizes which we reconstructed was identical to

the total sample size indicated by Kaul and Wolf in their paper on minors (41,438). If there are errors

in the reconstructed sample sizes, they must cancel each other out. This is very unlikely (p < 0.01): it

would mean that an erroneous reconstructed sample size, which would be very close to a wrong

whole number, would have to be cancelled by another reconstructed sample size similarly close to a

wrong whole number, but with a difference in the opposite direction.

Secondly, using the reconstructed data, we were able to reproduce exactly Kaul and Wolf regression

results presented in Table 1 of their paper:

8

This is the output produced by R when running the same analysis using the reconstructed data:

This is a further indication that we were able to reconstruct the data used by Kaul and Wolf in their

first working paper with 100% accuracy, or that, at any rate, performing the analysis with our

reconstructed data will produce results which are undistinguishable from the results produced with

the real data.

2017.08.29/pad

9

Annex 1. Python code of program image2data.py

-*- coding: utf-8 -*-

Obtaining data by reverse engineering from published figures

Author: Pascal Diethelm, 12.09.2016

PARM = [

 ['sample size', 'sample-size.png', 'sample-size.txt', 200, 350, 1, 156, 156],

 ['prevalence', 'prevalence.png', 'prevalence.txt', 4, 14, 1, 156, 156]

]

Imports --

import os

chdir = os.chdir

import scipy

from scipy import stats

import PIL

from PIL import Image

Constants ---

DIR = '.' # Work directory (change to directory where images are stored)

MARGIN = 0.33 # Margin around exact x-values defining vertical band considered for

fitting line

Functions ---

def is_yellow(x,y) :

 pix = PX[x,y]

 return (pix[0] >= 200 and pix[1] >= 200 and pix[2] <= 50)

def is_red(x,y) :

 pix = PX[x,y]

 return (pix[0] >= 200 and pix[1] <= 50 and pix[2] <= 50)

def is_white(x,y) :

 pix = PX[x,y]

 return (pix[0] >= 200 and pix[1] >= 200 and pix[2] >= 200)

def process_image(img_file, v0, v1, t0, t1, t_max) :

 global X0, Y0, X1, Y1, Z0, Z1, T0, T1, V0, V1, NX, NY, PX, A_T2X, A_X2T, A_Y2V

 print("Processing file "+img_file)

 X0 = -1; Y0 = -1; X1 = -1; Y1 = -1

 V0 = v0; V1 = v1; T0 = t0; T1 = t1

 img = Image.open(img_file)

 NX = img.size[0]

 NY = img.size[1]

 PX = img.load()

 print("Width = "+str(NX)+" pixels, height = "+str(NY)+" pixels")

 for x in range(NX) :

 for y in range(NY) :

 if (is_yellow(x,y)) :

 print("Yellow pixel at ("+str(x)+","+str(y)+")")

 if (Y1 == -1) : Y1 = y

 elif (Y0 == -1) : Y0 = y

 elif (X0 == -1) : X0 = x; Z0 = y

 elif (X1 == -1) : X1 = x; Z1 = y

 if (Y1 > Y0) :

 y = Y1

 Y1 = Y0

 Y0 = y

 A_T2X = (X1-X0)/(T1-T0)

10

 A_X2T = (T1-T0)/(X1-X0)

 A_Y2V = (V1-V0)/(Y1-Y0)

 segments = []

 for t in range(1,t_max) :

 x_low = t2x(t+MARGIN);

 x_hi = t2x(t+1-MARGIN);

 segment = calc_segment(t,x_low,x_hi)

 segments.append(segment)

 print([t,segment])

 value = []

 v_est = y2v(Z0)

 value.append([1,1,v_est,0,v_est,v_est])

 for t in range(1,t_max-1) :

 x = t2x(t+1)

 [a,b] = segments[t-1]

 [c,d] = segments[t]

 v_left = y2v(a*x+b)

 v_right= y2v(c*x+d)

 v_mid = (v_left+v_right)/2

 if abs(a-c) > 0.01 :

 v_est = y2v(a*(d-b)/(a-c) + b)

 t_est = x2t((d-b)/(a-c))

 else :

 v_est = v_mid

 t_est = t

 value.append([t+1,t_est,v_est,v_left,v_right,v_mid])

 v_est = y2v(Z1)

 value.append([t_max,t_max,v_est,v_est,0,v_est])

 return value

def t2x(t) : return int(round(X0+(t-T0)*A_T2X,0))

def y2v(y) : return V0+(y-Y0)*A_Y2V

def x2t(x) : return T0+(x-X0)*A_X2T

def calc_segment(t,x_lo,x_hi) :

 x_left = []

 y_left = []

 x_right = []

 y_right = []

 x_up = []

 y_up = []

 x_down = []

 y_down = []

 for x in range(x_lo+1, x_hi) :

 for y in range(1, NY-1) :

 if (is_red(x,y)) :

 left = is_white(x-1,y-1) or is_white(x-1,y) or is_white(x-1,y+1)

 right = is_white(x+1,y-1) or is_white(x+1,y) or is_white(x+1,y+1)

 up = is_white(x-1,y-1) or is_white(x,y-1) or is_white(x+1,y-1)

 down = is_white(x-1,y+1) or is_white(x,y+1) or is_white(x+1,y+1)

 if left and not right :

 x_left.append(x)

 y_left.append(y)

 elif right and not left :

 x_right.append(x)

 y_right.append(y)

 if up and not down :

 x_up.append(x)

 y_up.append(y)

 elif down and not up :

 x_down.append(x)

 y_down.append(y)

 if min(len(x_left),len(x_right)) >= min(len(x_up), len(x_down)) :

 a1, b1 = linear_regress(x_left,y_left)

 a2, b2 = linear_regress(x_right,y_right)

 else :

 a1, b1 = linear_regress(x_up,y_up)

 a2, b2 = linear_regress(x_down,y_down)

 return [(a1+a2)/2, (b1+b2)/2]

def linear_regress(x, y) :

11

 n = len(x)

 x_bar = sum(x)/n

 y_bar = sum(y)/n

 sumxy = 0

 sumx2 = 0

 for i in range(n) :

 sumxy += (x[i]-x_bar)*(y[i]-y_bar)

 sumx2 += (x[i]-x_bar)*(x[i]-x_bar)

 a = sumxy/sumx2

 b = y_bar - a*x_bar

 return [a,b]

def write_file(file, data) :

 output("t\tt_est\tv_est\tv_left\tv_right\tv_mid")

 for [t,t_est,v_est,v_left,v_right,v_mid] in data :

 output(str(t)+"\t"+fmtP(t_est)+"\t"+fmtP(v_est)+"\t"+fmtP(v_left)+"\t"+fmtP(v_right) \

 +"\t"+fmtP(v_mid))

 write_output(file)

def output(line) :

 lines_out.append(line+"\n")

 print(line)

def write_output(file) :

 file_out = open(file, 'w');

 file_out.writelines(lines_out)

 file_out.close()

def fmtP(P) : return '{:12.8f}'.format(P)

Main procedure ---

chdir(DIR)

for [label, img_file, txt_file, v0, v1, t0, t1, t_max] in PARM :

 lines_out = []

 print('Processing '+label+' graph')

 data = process_image(DIR+"/"+img_file, v0, v1, t0, t1, t_max)

 write_file(DIR+"/"+txt_file, data)

EOF

12

Annex 2. Reconstructed data using Figure 1 and Figure 2 of Kaul and

Wolf’s first working paper (on minors) showing also indicator

variables used in logistic regression

time prev smokers non.smokers size smoke.free ghw tax pp

1 12.3810 39 276 315 0 0 0 0

2 11.7825 39 292 331 0 0 0 0

3 10.2941 35 305 340 0 0 0 0

4 12.0548 44 321 365 0 0 0 0

5 12.0635 38 277 315 0 0 0 0

6 12.6935 41 282 323 0 0 0 0

7 13.1195 45 298 343 0 0 0 0

8 8.7209 30 314 344 0 0 0 0

9 13.0990 41 272 313 0 0 0 0

10 13.6201 38 241 279 0 0 0 0

11 10.0877 23 205 228 0 0 0 0

12 9.4395 32 307 339 0 0 0 0

13 9.9432 35 317 352 0 0 0 0

14 11.4754 42 324 366 0 0 0 0

15 8.7324 31 324 355 0 0 0 0

16 12.2699 40 286 326 0 0 0 0

17 10.6849 39 326 365 0 0 0 0

18 15.2231 58 323 381 0 0 0 0

19 7.8313 26 306 332 0 0 0 0

20 8.9888 32 324 356 0 0 0 0

21 11.5625 37 283 320 0 0 0 0

22 7.5988 25 304 329 0 0 0 0

23 11.1455 36 287 323 0 0 0 0

24 9.9010 30 273 303 0 0 0 0

25 10.2236 32 281 313 0 0 0 0

26 10.7843 33 273 306 0 0 0 0

27 12.9412 44 296 340 0 0 0 0

28 9.0909 29 290 319 0 0 0 0

29 9.9715 35 316 351 0 0 0 0

30 10.9091 36 294 330 0 0 0 0

31 9.8101 31 285 316 0 0 0 0

32 8.8328 28 289 317 0 0 0 0

33 8.8757 30 308 338 0 0 0 0

34 10.2894 32 279 311 0 0 0 0

35 8.5890 28 298 326 0 0 0 0

36 8.9172 28 286 314 0 0 0 0

37 9.2527 26 255 281 0 0 0 0

38 13.4483 39 251 290 0 0 0 0

39 11.2637 41 323 364 0 0 0 0

13

40 11.7021 33 249 282 0 0 0 0

41 8.1560 23 259 282 0 0 0 0

42 9.6210 33 310 343 0 0 0 0

43 7.3718 23 289 312 0 0 0 0

44 9.4463 29 278 307 0 0 0 0

45 10.2639 35 306 341 0 0 0 0

46 8.2781 25 277 302 0 0 0 0

47 7.3090 22 279 301 0 0 0 0

48 9.5385 31 294 325 0 0 0 0

49 7.8864 25 292 317 0 0 0 0

50 8.6687 28 295 323 0 0 0 0

51 8.0645 25 285 310 0 0 0 0

52 10.8696 35 287 322 0 0 0 0

53 11.8959 32 237 269 0 0 0 0

54 10.6250 34 286 320 0 0 0 0

55 11.3971 31 241 272 0 0 0 0

56 10.6061 28 236 264 0 0 0 0

57 10.4938 34 290 324 0 0 0 0

58 11.3793 33 257 290 0 0 0 0

59 13.1387 36 238 274 0 0 0 0

60 7.6190 24 291 315 0 0 0 0

61 8.4806 24 259 283 0.024 0 0 0

62 9.4708 34 325 359 0.024 0 0 0

63 9.4937 30 286 316 0.024 1 0 0

64 9.0301 27 272 299 0.024 1 0 0

65 9.3484 33 320 353 0.024 1 0 0

66 11.4379 35 271 306 0.024 1 0 0

67 6.7114 20 278 298 0.220 1 0 0

68 9.3023 28 273 301 0.320 1 0 0

69 12.8852 46 311 357 0.320 1 0 0

70 9.3458 30 291 321 0.320 1 0 0

71 5.9480 16 253 269 0.320 1 0 0

72 8.1081 24 272 296 0.336 1 0 0

73 10.7280 28 233 261 0.336 1 0 0

74 8.7786 23 239 262 0.336 1 0 0

75 5.9480 16 253 269 0.336 1 0 0

76 8.1633 24 270 294 0.336 1 0 0

77 10.0372 27 242 269 0.336 1 0 0

78 7.2519 19 243 262 0.336 1 0 0

79 11.1588 26 207 233 0.914 1 0 0

80 8.7558 19 198 217 0.914 1 0 0

81 9.2593 20 196 216 0.914 1 0 0

82 4.1096 9 210 219 0.914 1 0 0

83 8.3665 21 230 251 0.990 1 0 0

84 7.1146 18 235 253 0.990 1 0 0

14

85 8.9362 21 214 235 0.990 1 0 0

86 9.4650 23 220 243 0.990 1 0 0

87 8.5409 24 257 281 0.990 1 0 0

88 4.3290 10 221 231 0.990 1 0 0

89 7.2727 16 204 220 0.990 1 0 0

90 3.8462 8 200 208 0.990 1 0 0

91 7.9167 19 221 240 0.990 1 0 0

92 8.2524 17 189 206 0.990 1 0 0

93 9.1667 22 218 240 0.990 1 0 0

94 8.1731 17 191 208 0.990 1 0 0

95 6.5116 14 201 215 0.990 1 0 0

96 8.0717 18 205 223 0.990 1 0 0

97 7.4534 12 149 161 0.990 1 0 0

98 6.4039 13 190 203 0.990 1 0 0

99 5.5046 12 206 218 0.990 1 0 0

100 7.2650 17 217 234 0.990 1 0 0

101 8.0717 18 205 223 0.990 1 0 0

102 5.9633 13 205 218 0.990 1 0 0

103 7.8431 16 188 204 0.990 1 0 0

104 6.9124 15 202 217 0.990 1 0 0

105 8.6957 18 189 207 0.990 1 0 0

106 8.3333 17 187 204 0.990 1 0 0

107 6.0000 12 188 200 0.990 1 0 0

108 7.4766 16 198 214 0.990 1 0 0

109 6.7797 12 165 177 0.990 1 0 0

110 10.6599 21 176 197 0.990 1 0 0

111 8.3333 16 176 192 0.990 1 0 0

112 6.4327 11 160 171 0.990 1 0 0

113 7.2464 15 192 207 0.990 1 1 0

114 7.7720 15 178 193 0.990 1 1 0

115 10.1523 20 177 197 1 1 1 0

116 6.3348 14 207 221 1 1 1 0

117 7.7626 17 202 219 1 1 1 0

118 7.3913 17 213 230 1 1 1 0

119 8.3333 16 176 192 1 1 1 0

120 7.5893 17 207 224 1 1 1 0

121 12.7168 22 151 173 1 1 1 0

122 12.2449 24 172 196 1 1 1 0

123 5.4187 11 192 203 1 1 1 0

124 7.0652 13 171 184 1 1 1 0

125 5.6338 12 201 213 1 1 1 0

126 10.0478 21 188 209 1 1 1 0

127 10.1695 18 159 177 1 1 1 0

128 10.3261 19 165 184 1 1 1 0

129 4.9808 13 248 261 1 1 1 0

15

130 11.5578 23 176 199 1 1 1 0

131 5.6701 11 183 194 1 1 1 0

132 7.5000 15 185 200 1 1 1 0

133 7.8431 16 188 204 1 1 1 0

134 3.6885 9 235 244 1 1 1 0

135 3.7915 8 203 211 1 1 1 0

136 5.7692 12 196 208 1 1 1 0

137 6.2016 16 242 258 1 1 1 0

138 6.4885 17 245 262 1 1 1 0

139 4.3307 11 243 254 1 1 1 0

140 8.5837 20 213 233 1 1 1 0

141 5.5319 13 222 235 1 1 1 0

142 3.0568 7 222 229 1 1 1 0

143 6.6116 16 226 242 1 1 1 1

144 5.5794 13 220 233 1 1 1 1

145 4.3011 8 178 186 1 1 1 1

146 7.3469 18 227 245 1 1 1 1

147 4.1199 11 256 267 1 1 1 1

148 5.8036 13 211 224 1 1 1 1

149 8.1967 20 224 244 1 1 1 1

150 6.5385 17 243 260 1 1 1 1

151 4.4355 11 237 248 1 1 1 1

152 3.1088 6 187 193 1 1 1 1

153 5.8824 12 192 204 1 1 1 1

154 3.7037 7 182 189 1 1 1 1

155 6.1905 13 197 210 1 1 1 1

156 6.4327 11 160 171 1 1 1 1

