

Expanding the evidence base: The impact of Tobacco 21 policies on youth tobacco use

Danyi Li¹, Linyun Fu², Nathan Davies³, Steve Sussman^{1,4,5}, Mary A. Pentz¹

Dear Editor,

The minimum age for tobacco sales was raised to 21 years by the United States federal government in 2019 (known as Tobacco-21 or T21-policy).

Two recent systematic reviews, one with a meta-analysis, have synthesized the effects of T21 and found that T21 may reduce current cigarette-smoking in youth; however, the evidence quality was moderate and did not reach statistical significance¹⁻³. The published meta-analysis was on odds ratios, and excluded effects from linear probability models and marginal effects of a unit probability change, both of which are risk differences (RDs)^{1,2}. As the evidence on T21 continues to expand, we updated the systematic review and conducted a meta-analysis on RDs to offer a more comprehensive view.

Following the same search strategy and inclusion criteria as a previous meta-analysis^{1,2}, we updated the literature search in 14 databases from the last search date, 1 January to 20 October 2025, and identified an additional 405 studies for eligibility screening. We included empirical studies evaluating T21's effect on current cigarette-smoking in youth (aged 11–20 years) in the US. We constrained the analysis to the effects comparing youth smoking pre- and post-policy in areas with versus without a T21. Four studies, reporting a total of seven effect sizes, were included in a random-effects model⁴⁻⁷. Overall, the studies were well-designed and adjusted for key confounders; however, the effects included in the meta-analysis relied on self-reported smoking, which may introduce information and social expectation biases.

As shown in Figure 1, the T21s revealed a one-percentage-point lower risk of current cigarette-smoking (RD= -0.01; 95% CI: -0.03–0.003) compared to the non-T21 areas before policy implementation, although the effect was not statistically significant. The prediction interval (PI) quantifies the range of estimated true effects of future T21 evaluations across different settings⁸. The 95% CI: -0.05–0.02 suggests that for 95% of future studies, the true effects may vary from small increases (2%) to as much as a 5% reduction in current smoking.

Policy adoption does not always lead to reductions in youth smoking; implementation, enforcement, evaluation, and contextual factors must be considered. For example, primacy and recency effects were observed in the Needham 2005 T21 evaluation⁹. The study found a greater decline in youth smoking in Needham than in comparison areas within the first five years following T21 adoption; however, the effect diminished after five years, suggesting a potential floor effect⁹. Policy enforcement strength also plays a role, as shown in one of the recent evaluations on state T21s¹⁰. Although the study found an overall null policy effect on smoking, further differentiation of policy components revealed that stronger T21s (allowing stricter local policies, requiring retailers to be licensed, and including a violation penalty scheme) were associated with reduced smoking¹⁰. In addition, T21 may be more effective in areas with higher smoking prevalence

AFFILIATION

¹ Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, United States

² Crown Family School of Social Work, Policy, and Practice, The University of Chicago, Chicago, United States

³ Nottingham Centre for Public Health and Epidemiology, School of Medicine, Nottingham City Hospital, University of Nottingham, Nottingham, United Kingdom

⁴ Department of Psychology, University of Southern California, Los Angeles, United States

⁵ Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, United States

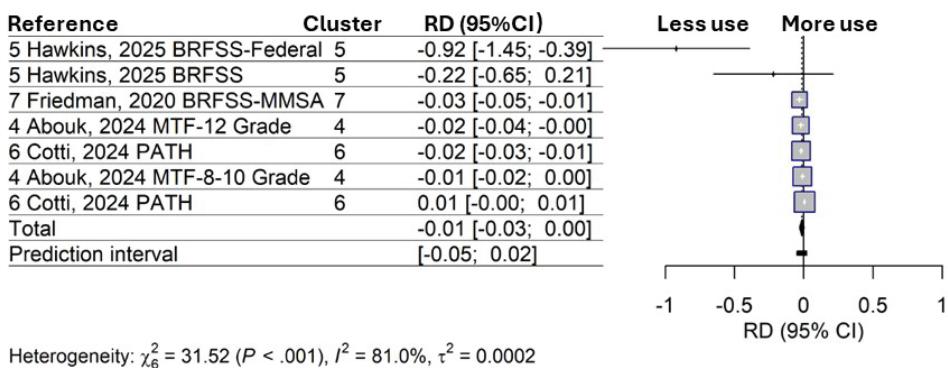
CORRESPONDENCE TO

Danyi Li. Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, 90032, United States

E-mail: danyili@usc.edu

ORCID iD: <https://orcid.org/0000-0003-1138-9181>

KEYWORDS


youth tobacco use, Tobacco 21, meta-analysis, age access law, youth smoking

Received: 7 November 2025

Revised: 19 November 2025

Accepted: 22 November 2025

Figure 1. Random-effects model of the effects (risk differences) of Tobacco 21 policies in the United States on past 30-day cigarette smoking in youth aged 11–20 years

and for populations with lower socioeconomic status³. Better protection of youth from tobacco use does not solely rely on policy adoption, but also on thoughtful policy design, consistent enforcement, and continuous equity-focused evaluation, as contextual factors and public awareness interact with policies and shape policy effectiveness.

REFERENCES

1. Li D, Wu S, Sussman S, Pentz MA. A systematic review and meta-analysis of Tobacco 21 policies and youth tobacco use: implications for future policy research. *Lancet Reg Health Am*. 2025;50:101208. doi:[10.1016/j.lana.2025.101208](https://doi.org/10.1016/j.lana.2025.101208)
2. Li D, Wu S, Sussman S, Pentz MA. Corrigendum to “A systematic review and meta-analysis of Tobacco 21 policies and youth tobacco use: implications for future policy research”- The Lancet Regional Health-Americas 2025; Volume 50: 101208; DOI: 10.1016/j.lana.2025.101208. *Lancet Reg Health Am*. 2025;51:101277. doi:[10.1016/j.lana.2025.101277](https://doi.org/10.1016/j.lana.2025.101277)
3. Davies N, Bogdanovica I, McGill S, Murray RL. What is the relationship between raising the minimum legal sales age of tobacco above 20 and cigarette smoking? A systematic review. *Nicotine Tob Res*. 2025;27(3):369-377. doi:[10.1093/ntr/ntae206](https://doi.org/10.1093/ntr/ntae206)
4. Abouk R, De P, Pesko MF. Estimating the effects of Tobacco 21 on youth tobacco use and sales. *J Health Econ*. 2024;94:102860. doi:[10.1016/j.jhealeco.2024.102860](https://doi.org/10.1016/j.jhealeco.2024.102860)
5. Hawkins SS, Carey N, Coley RL, Baum CF. Associations between Tobacco 21 and state flavour restrictions with young adult tobacco use. *Tob Control*. 2025;34:571-578. doi:[10.1136/tc-2023-058448](https://doi.org/10.1136/tc-2023-058448)
6. Cotti C, DeCicca P, Nesson E. The effects of Tobacco 21 laws on smoking and vaping: evidence from panel data and biomarkers. *J Health Econ*. 2024;98:102932. doi:[10.1016/j.jhealeco.2024.102932](https://doi.org/10.1016/j.jhealeco.2024.102932)
7. Friedman AS, Wu RJ. Do local Tobacco 21 laws reduce smoking among 18- to 20-year-olds? *Nicotine Tob Res*. 2020;22(7):1195-1201. doi:[10.1093/ntr/ntz123](https://doi.org/10.1093/ntr/ntz123)
8. IntHout J, Ioannidis JPA, Rovers MM, Goeman JJ. Plea for routinely presenting prediction intervals in meta-analyses. *BMJ Open*. 2016;6(7):e010247. doi:[10.1136/bmjopen-2015-010247](https://doi.org/10.1136/bmjopen-2015-010247)
9. Kessel Schneider S, Buka SL, Dash K, Winickoff JP, O'Donnell L. Community reductions in youth smoking after raising the minimum tobacco sales age to 21. *Tob Control*. 2016;25(3):355-359. doi:[10.1136/tobaccocontrol-2014-052207](https://doi.org/10.1136/tobaccocontrol-2014-052207)
10. Hawkins SS, Coley RL, Lanteri L, Baum CF. How adolescent tobacco use has responded to state Tobacco 21 laws and flavor restrictions. *Am J Drug Alcohol Abuse*. 2025;51(3):360-371. doi:[10.1080/00952990.2024.2444567](https://doi.org/10.1080/00952990.2024.2444567)

CONFLICTS OF INTEREST

The authors have each completed and submitted an ICMJE form for disclosure of potential conflicts of interest. The authors declare that they have no competing interests, financial or otherwise, related to the current work. D. Li reports that in the past 36 months received a Tobacco-Related Disease Research Pre-Doctoral Fellowship Award (PI: D. Li).

FUNDING

There was no source of funding for this research.

ETHICAL APPROVAL AND INFORMED CONSENT

Ethical approval and informed consent were not required for this study.

DATA AVAILABILITY

Data sharing is not applicable to this article as no new data were created.

AUTHORS' CONTRIBUTIONS

DL, ND and MAP: conceptualized the study. LF, DL and ND: validated the study. All authors contributed to the writing and editing of the manuscript. All authors read and approved the final version of the manuscript.

PROVENANCE AND PEER REVIEW

Not commissioned; internally peer reviewed.

DISCLAIMER

The views and opinions expressed in this article are those of the authors.